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Introduction

The aim of this paper is applying the homogenization method to some elasticity and thermoelasticity problems,
respectively, which are stated in a domain composed of two components. There are studied several cases according
the conditions on the interface between the two components of the domain and the structure of the medium that
occupies it.

Regarding the considered domain, it is an open subset Q of RY (N > 2), whose boundary 0 is Lipschitz
continuous, and it is described at the begining of Chapter 1. The domain is occupied by a medium with periodic
structure, composed by two components, one of them being connected and the other disconnected. The interface
between the two components has the necesary properties for formulating the problems studied in this paper. More
exactly, we consider Y = (0, 1)N the unit cube of RY and we assume that Y5 is a subset of Y such that Yo C YV
and it’s boundary T is also Lipschitz continuous. We define ¥; = Y \ Y5 and one can observe that repeating Y by
periodicity, the union of all ¥; forms a connected domain in R" which will be denoted by RY. We also consider
RY = RNV \ RY.

in what follows, the parameter £ € (0,1) represents the dimension of the periodicity cell and it will take it’s
values in a sequence of real numbers, which, in the homogenization process, will converge to zero. For each k € ZVV
weset Y¥ =k +Y and Y¥ =k + Y, where a € {1,2}. We define, for each ¢, Z. = {k € ZV : Y} C Q}, and we
introduce the sets
5= (%) and Qf =0\ 0,
kE€Z.

which represent the two components of domain §2. The boundary of 25 will be denoted by I'. and n will represent
the normal vector on I'., exterior to Q5. The interface I'. represents in fact a thin layer which surrounds the
particles and it is modeled as a surface.

For homogenization of the problems considered in this paper we use the periodic unfolding method introduced
by Cioranescu, Damlamian and Griso in [5], which was later extended to perforated domains by Cioranescu,
Damlamian, Donato, Griso and Zaki in [9] and [7]. In [12] Donato et al. use the perodic unfolding method for
a two component domain similar to the one considered in this paper. Later, Doanto and Yang use in [15] a time
depending unfolding operator for a wave problem, in a perforated domain. In [38], Yang defines two time depending
unfolding operators in a domain similar to the one considered in this paper

Regarding the paper’s structure, it is divided in four chapters. In the first part of Chapter 1 we describe
the domain and we continue with the study of an elasticity problem. We consider that we have a double porosity
medium, more exactly the elasticity of the disconnected component is of order £2. On the interface between the two
components of the medium, we have a jump of the displacement vector, proportional with the normal component
of the stress tensor which is supposed continuous. After obtaining the variational formulation of the problem and
a priori estimates we prove some convergence results and we get the coupled homogenized problem by passing to
limit as ¢ — 0. After that we decouple the limit problem by introducing the homogenized coefficients and the
solutions of cell problems. Although the elasticity tensor of order €2 does not make part of the homogenized tensor,
it make its presence felt in the solution of the limit problem through the cell problems formulated in Y5.

The next three chapters are dedicated to some thermoelasticity problems with zero initial conditions. More
exactly, we study the difusion of the temperature in an elastic medium which occupies the domain €2 defined in
Chapter 1. Several cases are approached according to the conditions considered on the interface between the two
components of the domain and to the form of the elasticity tensor in the disconnected component. As in Chapter
2, we obtain the homogenized problem, coresponding to each thermoelasticity model that is proposed, and one can
see a combination of the homogenization results of an elasticity problem with the results of a diffusion one.

More exactly, in Chapter 2 we study the clasic thermoelastic model and we add jumps conditions of both
displacements and temperatures, on the interface between the components of the medium. The homogenized
problem obtained in this case is similar to the initial thermoelastic one, the differences being represented by the
presence of some coupling terms between limits u' and u?, respectively 8! and 2. Also, the tensors which describe
the disconnected component do not appear in the homogenized problem.

In Chapter 3 we analize the same problem but we consider again that the elasticity of the disconnected compo-
nent is of order £2. Also, the temperature-displacement tensor and the density are of order ¢ in the disconnected
component. This time, the tensors which describe the disconnected component appear in the homogenized problem,
more exactly they make their presence felt in the homogenized equation of the temperature, resulted by passing to
limit on the disconnected component. As in Chapter 1, they are also part of solution of the limit problem through




1 Homogenization of an elastic double porosity medium with imperfect interface

the cell problems stated in Y5. Moreover, as in Chapter 1, one can see that the coupling term of limits ! and u?
which describe the displacements, does not exists in this case.

The last model proposed in this paper is studied in Chapter 4. This time we consider that only the displacements
have a jump on the interface between the two components of the medium. The disconnected component has also
the elasticity of order €2 and its density and the temperature-displacement tensor are of order . The difference
between this model and the one studied in Chapter 3, consists, as we expected, in the absence of the coupling term
of the limits which describe the temperatures.

The models proposed in this thesis have not been treated before, thus the results exposed here are original, as
they are obtained from my own research activity.

1 Homogenization of an elastic double porosity medium with imper-
fect interface

In this Chapter we study an elasticity problem stated in a double porosity medium which occpupies the domain
Q. On the interface I'; we consider a jump of the displacements, proportional with the normal component of the
stress tensor which is supposed continuous. More exactly, we have the problem

8528 =g, inQ, ac{l,?2},
oisng = oin; = ehe(ui —uj®) onT., (1.1)
e =0 on 09,
where h.(z) = h(x/e) represents the jump factor of® = af,exn(u*) are the components of the stress tensors.
The functions ey, (u*®) = % (dé;;’“h + 3 d“" ) represent the components of the deformation tensor and ag}, are the
components of the elasticity tensors deﬁned by:
A'e(z) = Al(z/e) and A% (z) = ?A?%(x/¢). (1.2)

We consider that h and the components af, of the symmetric and positive definite tensors A%, are smooth,
Y- periodic adn bounded functions an we also consider that h(y) > 0 on I We introduce the space V. =
{ve H'Y(O5), v=0pe 90} endowed with the L? norm of the gradients and the Hilbert space
H. = VN x HY(95)" (13)
endowed with the scalar product
(w,0)g. = | VuiVo} +e* [ VuiVe? + 6/ (uf —ui)(vi —v}), (1.4)
Qs Q3 .
where the elements of H. are denoted u = (u',u?). The variational formulation of problem (1.1) is:
Find v* € H. such that
(0255 av 13 [
(w0)= > / i e +sﬁahe(uf — ) —oh) = [ ful +/ngw$, voeH. (1)

a=1,2

Theorem 1.1. For any ¢ € (0,1), problem (1.5) has a unique solution u® € H.. Moreover, there exists a constant
C > 0 independent of € such that, for a € {1,2} and eachi=1,...,N, we have

[ui(lz20z) < Cs IVUi®llzn < Oy el Vi |lpzg) <O luf® — w2, < Ce720 (1.6)
For a set D C RY and v € L*(D), we denote by (v ‘D‘ fD y)dy and if v is a funtion definite on QF,
a € {1,2}, then ¥ the extension with zero to the entire Q Furthermore we define the spaces:
H),,.(Ya)={ve H (RY) : v este Y-periodica}, H;m( ={ve H,, (Ya): (v)y =0},

V= HYQN x L2 (@ HY, (V1)) x L2 (0 H' (Ya)) ™

per
Using periodic unfolding method we prove some convergence results and we obtain the coupled homogenized
problem (in variables z and y).




2 The thermoelastic model with jumps in displacements and temperatures, in a two component

domain

Theorem 1.2. If u® = (u'®,u®) is the solution of problem (1.1), then
e — V1| - ub weakly in L2(Q)N,

% — |Ya| - (@?),, weakly in L2(Q)V,

Y>

T (u'e) — ul strongly in L? (€ Hl(Yl))N7

(1.7)
T5 () — u? weakly in L?(2; H' (Y)Y,
TE (ern(u')) = egpn(ul) +ef, (u') weakly in L*(Q x Y1),
eT5 (epn(u®)) — ef, (@?) weakly in L*(2 x Ya),
where the triplet (u!,a',u?) € V with <ﬂzl>r =0 a.e. on , is the unique solution of problem
Out 8ﬂ1> (&p' 8@1) / ouz 0v? /
1 E k i i 2 k9% ~ 1\ (2
Ay a. t 53— + + Aijkn 2 + h(ui —u; )(®F — i) =
/Q><Y1 gt (axh Oyn 3933‘ 5'%‘ QxYs Jkh oyn 3%’ QxT ( )( ) (1 8)
QxY; QxYs
The homogenized problem in (2 is obtained by introducing in (1.8) the expressions of functions 4!, respectively
%2 and using the homogenized coefficients aitm formula. More exactly,
~1 Im 8“[1 .
Bh(e,y) = Wi (9) - 5oL (@) QX Vs, (19)
Ui (2,y) = wi (@) + fi(x)wyy(y) in Qx Ve, (1.10)
awlm
* 1 1 1k
ai’m: a’i‘m—"_a’i' ) 1.11
gl /Y1 gl jkh ayh ( )
where for I,m =1,...N, wi™ € H}, (Y1)" and w) € H(Y2)" are the unique solutions of cell problems
9 (4 L Owi - 9 (o Owy, -
_aiyj (aijlm + aijkh ayh ) =0 1In Yl _aiyj (a’ijkh 8yh ) = 6il n Y2
l l (1.12)
owiy ow
(a}jlm + a}jkhﬁ%j =0 pel, a?jkhﬁnj = hwlgi pe I.
Theorem 1.3. If u® € H. is the solution of problem (1.5), then
a'® — |Yi|-u' weakly in L*(Q)Y, (1.13)
% = |Ya|-u' + fi - ¢' weakly in L*(Q)V, (1.14)
where u' is the unique solution of problem
0 ou}
T (ar, k) = £ inQ
3:Cj (a”khﬁxh) f m (1_15)
u=0 on 09,

and the components of ¢' are ¢} = / wh;.

Y>

2 The thermoelastic model with jumps in displacements and temper-

atures, in a two component domain

Starting with this chapter, we will focus on a thermoelasticity problem with zero initial conditions, stated in the
domain © defined in Chapter 1. We consider two jump factors h¥(z) = h*(z/¢) and h?(z) = h?(x/¢), respectively,
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2.1 Variational formulation and a priori estimates

and the elasticity tensors A% (x) = A%(x/¢) where h*, h? € L>°(T') and the components agigy, € L(Y) of the
symmetric and positive definite tensors A¢ smooth, real and Y- periodic functions.

We also introduce the temperature-displacement second order tensors B¢ (x) = B'(z/¢) and B*(x) = eB%(z/¢)
and the thermic conductivity tensors K¢ (x) = K*(x/e) where B® and K® are symmetric, K being also positive
definite. Their components b7, and kf;, respectively, are also smooth and Y-periodic functions from L>(Y).
Furthermore, Ty denotes the reference temperature, p®¢(x) = p*(x/e) represent the densities of the two mediums,
and ¢*¢(x) = ¢*(z/e) is the specific heat for constant deformation of each of the two mediums, the functions
p%, c* € L>®(Y) being considered smooth, Y-periodic and obviously, strictly positive. For a € {1,2}, if u®¢ andf*

are functions defined on €27, we introduce the constitutive laws of'¥ = a3, exn(u®) — by 0.

The problem studied in this chapter is represented by ecuations (2.1)-(2.1) and conditions (2.3)-(2.6):

800‘5 aZuqe
ij ae i (o3 2.1
3:17] e ot? fi on {2, (2.1)

8 g 80&6 ag 861_7 (uas) E aeae — g
~ o (km o ) + Tobg; T +c 5 = on Q°, (2.2)
}]En] = sz n; = eh(u? —uj®) on Ty, (2.3)
o01e 002
k};a— i =kis o = eh?(6%* — ') onT., (2.4)
x x

where f; are the components of the vector field f € L?(Q)”" which represent the forces, and r € L?(Q) is the energy
source. Moreover, we impose conditions on the boundary 952,

u'®* =0, 6'¥=0 ondQ, (2.5)
and zero initial conditions, namely

u®(0,2) =0, u*(0,z) =0, 6%°(0,z2)=0. (2.6)

2.1 Variational formulation and a priori estimates
Let T be a real and strictly positive number. In the following we shall use the notations Qr = [0,7] x Q,
0%, =1[0,7] x Q, and I'T = [0,7] x I'- and we introduce the spaces
Vie ={v e C>®(0,T;H'(Q5))), v=00n 02 and v =0 on {0} x Q},
Voo = {v € C®(0,T; H'(Q5))), v=0on {0} x Q},
We = (Vi x V5l) x (Vie x Vae) - (2.7)

An element of W, will be denoted V = (v,w) where v = (v!,v?) € Vif¥ x V¥ and w = (w',w?) € Vic x Vo.. In
this space we introduce the weak formulation of problem (2.1)-(2.6) namely:

Find U¢ = (u®, 0°) € W, such that

L (U, V)=D.((f,7),V), YV = (v,w) € W, (2.8)
where, for each e, L. : W, x W, — R is a bilinear form defined by
LU, V) l// t—T %Ekhekh(ua) + bff@o‘) ei; (0%) + peusvs + +b” ei;j (u)w+
a=1,2 E
1 1 00% dw*™
R ae ae 0% ™ _ ae — 2.9
+T 0%w )—i—p US v + b e”( Nw® +T0 0w —l—TO kjax] oz, ds] (2.9)

—5// (t = TYR™ (2 — ub) (42 —vl)—T€0/OT/F(t—T)hg(QQ—el)(w?_wl),

=

with U = (u,6), V = (v,w), and D. : (L*(Q)N x L?(Q)) x W, — R defined by

D. ((/, -y //Et— foie +—rw) (2.10)

a=1,2

-4 -



2.2 The homogenization process

We introduce now the Hilbert space W, which is the completion of W, in norm ||-|| generated by the scalar product

L o0 dwe
(U, V)w. = [// uf vy + U 0Y + e (ut)e;; (v*) + 0%w® +/O oS 8151;' ds
a=1,2 a A [

+g//u_uv_v +g/// (w? — wl)ds.

and one can see that £, can be extended by continuity to the entire space W, x W;, and D, can be extended to
(LQ(Q)N X LQ(Q)) X We.

(2.11)

Theorem 2.1. The problem (2.8) has a unique soluiton. Moreover, there exists a constant C > 0, independent of

e, such that:
lui®N2g,) <O 4% l2@s,) <O VU ll2g,) <O 10°%12(0s,) < C, (2.12)
t t )
’ / (VHEOL)2 / (926 _ 915)
0 0

2.2 The homogenization process

< Ce V2, (2.13)

<O, |lui® —ui®lr2rr) < Ce™1/2, ‘

L1(Q7,) LY TT)

In this section we shall use the notation

W= H20,T; H}(Q)N x L=(0,T; L2(Q; HY,, (V1)) x H2(0,T; L*(Q))N x

per

x H'(0,T; H} (Q)) x L>(0,T; L2(; HY,, (Y1) x H'(0,T; L*(R)).

per
Theorem 2.2. If (uf,0°) € W, is the solution of ptoblem (2.1)-(2.6), where u® = (u'®,u®) and 65 = (0'¢,6%),
fhen % 2 |Y,| - u® weakly* in L(0,T; L2(Q))N

6o Y, |- 0% weakly* in L>°(0,T; L*(Q)),

TE(uo®) 2 u® weakly* in L>°(0,T; L2 (Q; H (Ya)))N,

T (en (u)) = epn(ut) + e, (@') weakly* in L>(0,T; L3(Q x 1)), (2.14)

T (ern(u?%)) =0 weakly* in L®(0,T; L*(Q x Y3)),

TE(6%) 2 0% weakly* in L>=(0,T; L>(; HY(Y,))),

TE(VOE) 2 VO +V,0' weakly* in L>(0,T; L2( x Y1),

T£(V6O%) 20 weakly* in L=(0,T; L*(Q x Y3)),

where (ul,u*, u?, 6", 517 0%) € W, is the unique solution of problem
T
L =) [k (cnntu) + etal@)) - b61] (essth) + et (@) +
0 QXYl
1 .
// t— paua¢?+ 0% a}_‘r
a2 /0 axy, To
I 80* 90\ [0q" an
4 VKL o™ (! 2y (=13 1
o ot )”(a:cﬁayj)(‘o‘wz ) //Qy st +a@)ds e
r 1
[ -y - ub)d - o+ 006 - 01)(aE - ah)] =
0Jaxr 0

T
1
= Z // (t_T)<f7,SO?+77aqa)7 v(¢17¢1’§02aq17Q1aq2)€W
ac1.270J0xY, Ty

Moreover, for o € {1,2} and for almost x € Q we have u*(0,z) =0, u*(0,z) =0, 6*(0,z)=0.

-5-



3 The thermoelastic model in a double porosity medium with jumps in displacements and
temperatures

1

We introduce now the unique solutions 2!, w{™, x* € H!_ (Y1)N (I,m =1,...,N), of the cell problems

per
8 1 82]@ 1 . 8 1 1 8wl17]? 4
_8yJ ( kaha bij) =0 inY; _@(aijlm + Qjkn Bun ) =0 inY; 16
8 1 8wlm :
( }jkhay bl)nj:O on T, ( ”lm—i—awkh alk )nj:O onT,
respectively
0 1 Ox} o
_8yi<k k”@ )—0 inY;
ol (2.17)
(k}k+kllj8 )nl—O onT,
and one can see that .
~ U
u,lc(t,.%‘,y) = axl (t,.’l’:) wlk( )+9 ( ) Zli(y) (2'18>
00!
0 (t,w,y) = 5 (b2) X ). (2.19)

we define now the homogenized coefficients

ow owlm X} 0z}
1% 1 1k 1 1z 1% 1 YAk 1= 1 7
Aijim = 7 m+a7. ’ bm,*/bm‘i»b ’ kz :/ k +kz Y :/ bz . (220)
i /Y1 9t I Dy, : Y3 : dy; g Y3 7oy’ v, 7 0y;

and we prove the next theorem:

Theorem 2.3. If (uf,0°) € W. is the solution of problem (2.1)-(2.6), where u® = (u'¢,u?®) and 65 = (6'¢,6%),
then for a € {1,2}
% I Y| - u® weakly* in L>(0,T; L*(Q))Y, (2.21)

0°¢ I |V, |- 0% weakly* in L=(0,T; L*(Q)), (2.22)

where (u,0) with u = (u',u?) and 0 = (0,6?) is the unique solution of problem

9 1x aullc 1xpl 1 &uj} u .
— ail.j(aijkhaixh - b” 0 ) + <p >Y1 8t2 —H (u — U; ) |Y1| ft m Q, (223)
Pup . :

< 2>Y2 8152 + HY(u? —u}) = |Ya| fi in Q, (2.24)

9 (,1.00' 1 Oeij(u') 1+ o9 9 1y _ ;
i (k” = )+T0bijT+ (Tw + (), ) o —HU(0 =" = i|r inQ, (2.25)

062
(A, s + HY(0? - 0}) = |Ya|r inQ, (2.26)
ul=0, 01 =0 onoQ, (2.27)
with the initial conditions

u®(0,2) =0, 4%(0,z)=0, 0%0,z)=0. (2.28)

where HY :/h“ and H? :/he.
r r

3 The thermoelastic model in a double porosity medium with jumps
in displacements and temperatures

In this chapter we study again problem (2.1)-(2.5) considered in Chapter 2 but this time the domain Q is
occupied by a double porosity medium similar to the one considered in Chapter 1. As we expected, the results
obtained here are a combination between the results obtained in homogenization of the elastic problem considered
in a double porosity medium, from Chapter 1, and the results in the homogenization of a diffusion problem stated
in a domain occupied by a clasic medium. As in Chapter 1, it is interesting to see that although the tensors A2

-6 -



3.1 Homogenization results

and B? do not appear in the homogenized problem, they appear in the limit of @?¢ through two terms & and ¢,
respectively which are part of the mentioned limit.

In what follows we shal use the same notations as in Chapter 2 and the coefficients of the problem will have the
same properties. Unlike the precedent chapter we will consider that A% (x) = e2A%(x/¢), and p?*(z) = ep?(x/e).

The space W, represents this time the completion of W, in norm ||-|| generated by the scalar product
T T T t
00 w™
UVw. = // eij(u)ei; (v! +€2// eij(u?)ei; (v*) + // W + 0w + [ T——ds| +
WV = [ ] s+ [ | estuenet+ 30 [ e

+e/OT/F€<u§ —ul)(e? — o)) +/T//<9 ) (w? — w!)ds. »
3.1

and the forms £. and D, can still be extended by continuity to spaces inca se pot prelungi prin continuitate la
W. x W, and (LQ(Q)N X L2(Q)> X W, respectively.

Theorem 3.1. Ezista o constanta C > 0, independenta de € pentru care:

ls iz ) <Co iz ) <Co [Velllizsny < O el V|, < C. (3.2)
t 2
10| 20z, ) < C, ‘/ (V) <C, (3.3)
0 L1(9%.)
t
2® — 0 paqery < O 2, ] / (6% — 62) < el (3.4)
0 LY(r7T)

3.1 Homogenization results

‘We consider

W = HZ(O,T; Hé(Q))N x L*>(0,T; LZ(Q;H;eT(Yl))N x L*>(0,T; L2(Q;H1(YQ)))NX
(3.5)

X H(0,T; Hy () x L>(0,T; L*(Q; Hy,,.(Y1)) x H'(0,T; L*(Q)),

per

Theorem 3.2. If (uf,0°) € W, is the solution of problem (2.1)-(2.6), with A¥(z) = Al(x/¢), A% (z) = e2A%(x/e),
pie(z) = p(z/e) and p**(z) = ep*(x/e) where u® = (u'€,u*) and 0° = (0'¢,60%), then

' = |Yy| - ul weakly* in L(0,T; L2(Q))V,

s N ‘Y2| . <ﬁ2>

Y, weakly* in L>(0,T; L?(2))",

*

0o 2|V, |- 0% weakly* in L°°(0,T; L2(12)),

TE(u'®) 2wl weakly* in L°(0,T; L2(; H(Y1)))V,

TE(u?®) 202 weakly* in L>®(0,T; L2(; H(Y2)))V,

TE (ern (ut®)) = e (ul) + e, (@) weakly* in L=(0,T; L2(Q x 1)),
T (ern(u?®)) = €, (u?) weakly* in L>=(0,T; L2 x Y3)),

TE(6°%) = 0% weakly* in L>=(0,T; L*(; HY(Y,))),

TE(VOE) 2 Vol +V,00 weakly* in L>°(0,T; L2( x Y1),

T5 (V%) 20 weakly* in L>(0,T; L*(Q x Y3)),

where (ul,u*,u?, 6", 517 02) € W, is the unique solution of problem

/()T/Qxyl(t =T) [azljkh (ekh(ul) + ezh(ﬂ1)> — b}jel} (éij(apl) + égj(¢1))+

-7 -



3.1 Homogenization results

T
// (t— T) [a2, el (%) — 12,6%] &t @%+// (t— T)plilol+
QXYQ QXYI
S e (e vea)e [ e (37)
QXYl Q><Y2
1 (T 001 90\ 10"  OQ!
(t —T)c"0%¢* + - / ki +— + +
—12/\/Q><Y 4 TO Q><Y1( ) 7(833] 8yj>(8ml (9:[/1)
[ [ @ -+ 06 - - a)] =
0Jaxr To

Azwyﬂ@@+émﬂ+ﬂlﬂyﬂ@@+émﬁ

V(p' @' 9% ¢". Q" ¢") e W
Moreover, for almost every x € Q we have u'(0,z) =0, 4'(0,2) =0, 6%0,z)=0.

We find the expresions of ', @2, ! thus (2.18)-(2.19) still hold, moreover

Ut @, y) = up(t, @) + fi@)wy(y) + 0°(8, 2) 22 (y)- (3-8)

where 22, wh € H(Y3)" are the unique solutions of cell problems

9 2 awgk . 0 9 azk 9 .
- =6y inY, —(a —2) =0 inY:
8yj ( @ijkh Yn ) 11 ¥ 3% zjkha zj) m Yo 59)
2 8wl2k u, 1 2 822 2
iikh "Gy, nj = h%wy; onT, ( Qiikh A a0 — b3 )nj =0 onl.
We define 5.2
2 2 U%
¥ / bi; 3.10
Ys i ayj ( )

an introducing (2.18), (2.19), (2.20), (3.8) and (3.10) into the limit problem (3.7), we get the homogenized problem
in Q. More exactly, we prove the following theorem:

Theorem 3.3. If (uf,0°) € W. is the solution of problem (2.1)-(2.6) with A (x) = Al(z/e), A% (x) = e2 A?(x/¢),
pte(x) = pt(z/e) and p**(x) = ep®(x/e) , where u® = (u'®, u*) and 6° = (6'¢,0%), then we have

' 2 Y| - ut weakly* in L°(0,T; L*(Q))Y, (3.11)
% 5ol - ult + fi - €+ 02 C weakly* in L°(0,T; L*(Q)N, (3.12)
0°¢ I Y, | - 0% weakly* in L®(0,T; L*(Q)), Va e {1,2}, (3.13)

where (u,0) with u = (u',u?) and 0 = (0,6?) is the unique solution of problem

R

(9 1% 6 1% 1 T .
_ %( i g — b0 ) Py, = fi (3.14)
9 [ 4,00! 1 0€ij(ul) 1x 96" 0062 _ g1y — :

-5 (ki 5 )+T0bij D (T + (), ) 5 — HOG2 = o) =il v in @, (3.15)

(T 2 00" | o 02— 0Y) = |Ya|r inQ
oY +<C> o T ( )= [Ya|r inQ, (3.16)
ul=0, 0'=0 on 09, (3.17)

with the initial conditions

u®*(0,2) =0, 4%(0,z) =0, 040,z) =0, (3.18)

where HY = /h9 and the components of vector fields ¢ and ¢ being £ = /
r

wh; and (; :/ 22, respectively.
Y2 Y2




4 The thermoelastic model in a double porosity medium with jumps in displacements and
continuity in temperatures

4 The thermoelastic model in a double porosity medium with jumps
in displacements and continuity in temperatures

In this chapter we change the jump of temperatures condition on the interface I'c, from the problem studied in
Chapter 3. More exactly, on each of the two components Q] and 25 of the domain 2 occupied by a double porosity
medium, we consider the ecuations

Oose 02y
_ 9 e 7 =f; 4.1
T f (4.1)
0 00 e (u™e) 00
— [ koe Thboe Z 4 ag = 4.2
8£E1( K al’] ) + 0 K 315 te 8t " ( )
along the conditions on the interface I'c and the boundary 02, respectively
llfnj = 02] n; = eh(u? —uj*) on Ty, (4.3)
8015 8028
klljg a kfjs a ~Ni on re, (4.4)
9 f=60* onT., (4.5)
ul* =0, 0¥ =0 ondQ,
and the initial conditions
u®(0,2) =0, u**(0,z) =0, 6%(0,z2)=0. (4.7)

As in Chapter 3 we consider that
A (x) = Al(afe),  A*(x) =e’A%(x/e),  BY(x) = B'(z/e, B*(z)=eB*(z/e),
pl(x) = pl(afe),  p*(x) =ep?(z/e), K(x) = K(zfe), *(z)=c(a/e).

The functional space used in this chapter will also be the space W defined in Chapter 2 by (2.7), and the variational
formulation of problem (4.1)-(4.7) is:

Find U® = (uf,6%) € W, such that

LU, V) =D ((f,r),V), VV = (v,w) € W, (4.8)
where for each e, the bilinear form L. : W, x W. — R is defined this time by:
L(U, V) l// t—T %Ekhekh(ua) + bff@o‘) ei; (0%) + peusvs + +b55 ei;j (u)w+
a=1,2 a
1 1 00 Qw®™
B ae boza ’ « et el i kaa ds| — 4.9
+T >+p 07 £ i e (u)w +T0 +To 9 dx; Oy S] (4.9)

—5// (t — T)h" (u? — ui)(0F — 0}),

and D. : (L*(Q)N x L?(Q)) x W. — R is given by (2.10). The space W, is obtained this time by completion of
W, in norm generated by the scalar product

U V)w, = /OT/Qiez‘j(ul)ez‘j(Ul)wLSQ /OT/;ij(UQ)ez‘j(UQH

T t
Z 90 ow®
N (! ", Oé 60& @ d
- [/0/2161 Vi * W 0 6331 6Z‘L

a=1,2

(4.10)

T
+s//<u3—u}><v?—v3>.
0JT:

and again the forms £.(-,-) and D.(-,-) can be extended by continuity to W. x W. and (L?()V x L*(Q)) x W,
respectively.

Theorem 4.1. Problem (4.8) has a unique solution. Moreover, the exists a constant C > 0, independent of €,
such that:
ui ez ) <O, 145" |2z, ) <O, [[VUui|l2s, ) < C, (4.11)
t
/ (V6=)? <0, |uiF - U%EHLQ(FZ) < Ce V2 (4.12)
0

105|205,y < C, ‘
L1 (Q%,)
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4.1 Homogenization results

4.1 Homogenization results

Theorem 4.2. If (uf,0°) € W, is the unique solution of (4.1)-(4.7), where u® = (u'¢,u?®) and 0° = (0'¢,6%),
then convergences (3.6) hold, where (u',u*,u?,0%, 0%, 0%) € W defined by (3.5), is the unique solution of problem

//QxYl (t— zykh (ekh(ul) + GZh(ﬂl)) — b%jel} (éij(cpl) T éfj(@1)>+

T T

+ / / (t = T) [0l (@) — B2,0%] ¢¥(92) + / / (t— T)plilgl+
0JaxYs, QxY;
T

[ e (e s a@)e + [ a-mseaes (413)
0 QXYl QXYQ

1 T i1 [T L1000 99\ 19g"  OQ!
+TO Z /O/QxYa(t_ ) 0 +?0 /Q><Y1( )k”(ax] +8T/J>(8x, N 32/1 )+

a=1,2

+/0T/szx1‘( (@ — ) (87 = 1) //zxylt_ Jigi+ rq)+//szxy2( _T)(fi(i)?+Tiorq2)’

V(' @', % ¢", Q' ¢%) e W.

Moreover, for almost every x € ) we have

ur(0,2) =0, 4'(0,z) =0, 6%(0,z)=0. (4.14)

We prove that the expressions (2.18), (2.19), (3.8) of functions u' §1 and 12, respectively, still hold and
introducing them into the limit problem (4.13) we get the homogenized problem in Q.

Theorem 4.3. If (uf,0°) € W, is the solution of problem (4.1)-(4.7), where u = (u'®,u?®) and 6° = (0'¢,6%),
then we have

@' =Yy - ut weakly* in L>(0,T; L*(Q)Y, (4.15)
W% 5ol - ut + fi - € 02 - C weakly* in L°°(0,T; L2(Q)N, (4.16)
0°° 2s |V, | - 0%weakly* in L(0,T; L*()), Vo € {1,2}, (4.17)

where (u,0) with u = (u',u?) and 0 = (01, 0?) is the uniique solution of problem

9 ( 1. Ou 1xpl o Pul .

_ %j(aijkhaimh —b;;0 ) +{r')y, o —fi i (4.18)

0 (1.9 1 Oeij(ut) o 1y )90 ‘
8 (kw o ) + Tob;; ot + (To’Y + <c >Y1>E =|Y1i|r inQ, (4.19)

062 _
(TO’72* +(c%),,. ) 5 = [lr i, (4.20)
ul=0, 01=0, ondQ, (4.21)
with the initial conditions

u®(0,z) =0, a*(0,2) =0, 6%(0,z)=0, (4.22)

77

where the components of vector fields &' and ¢ are & = / wél and (; = / 22, respectively.
Y2 Y2
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