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Introduction

The aim of this paper is applying the homogenization method to some elasticity and thermoelasticity problems,
respectively, which are stated in a domain composed of two components. There are studied several cases according
the conditions on the interface between the two components of the domain and the structure of the medium that
occupies it.

Regarding the considered domain, it is an open subset Ω of RN (N > 2), whose boundary ∂Ω is Lipschitz
continuous, and it is described at the begining of Chapter 1. The domain is occupied by a medium with periodic
structure, composed by two components, one of them being connected and the other disconnected. The interface
between the two components has the necesary properties for formulating the problems studied in this paper. More
exactly, we consider Y = (0, 1)N the unit cube of RN and we assume that Y2 is a subset of Y such that Ȳ2 ⊂ Y
and it’s boundary Γ is also Lipschitz continuous. We define Y1 = Y \ Ȳ2 and one can observe that repeating Y by
periodicity, the union of all Ȳ1 forms a connected domain in RN which will be denoted by RN1 . We also consider
RN2 = RN \ RN1 .

in what follows, the parameter ε ∈ (0, 1) represents the dimension of the periodicity cell and it will take it’s
values in a sequence of real numbers, which, in the homogenization process, will converge to zero. For each k ∈ ZN
we set Y k = k + Y and Y kα = k + Yα where α ∈ {1, 2}. We define, for each ε, Zε =

{
k ∈ ZN : εȲ k2 ⊂ Ω

}
, and we

introduce the sets
Ωε2 =

⋃
k∈Zε

(
εY k2

)
and Ωε1 = Ω \ Ω̄ε2,

which represent the two components of domain Ω. The boundary of Ωε2 will be denoted by Γε and n will represent
the normal vector on Γε, exterior to Ωε1. The interface Γε represents in fact a thin layer which surrounds the
particles and it is modeled as a surface.

For homogenization of the problems considered in this paper we use the periodic unfolding method introduced
by Ciorănescu, Damlamian and Griso in [5], which was later extended to perforated domains by Cioranescu,
Damlamian, Donato, Griso and Zaki in [9] and [7]. In [12] Donato et al. use the perodic unfolding method for
a two component domain similar to the one considered in this paper. Later, Doanto and Yang use in [15] a time
depending unfolding operator for a wave problem, in a perforated domain. In [38], Yang defines two time depending
unfolding operators in a domain similar to the one considered in this paper

Regarding the paper’s structure, it is divided in four chapters. In the first part of Chapter 1 we describe
the domain and we continue with the study of an elasticity problem. We consider that we have a double porosity
medium, more exactly the elasticity of the disconnected component is of order ε2. On the interface between the two
components of the medium, we have a jump of the displacement vector, proportional with the normal component
of the stress tensor which is supposed continuous. After obtaining the variational formulation of the problem and
a priori estimates we prove some convergence results and we get the coupled homogenized problem by passing to
limit as ε → 0. After that we decouple the limit problem by introducing the homogenized coefficients and the
solutions of cell problems. Although the elasticity tensor of order ε2 does not make part of the homogenized tensor,
it make its presence felt in the solution of the limit problem through the cell problems formulated in Y2.

The next three chapters are dedicated to some thermoelasticity problems with zero initial conditions. More
exactly, we study the difusion of the temperature in an elastic medium which occupies the domain Ω defined in
Chapter 1. Several cases are approached according to the conditions considered on the interface between the two
components of the domain and to the form of the elasticity tensor in the disconnected component. As in Chapter
2, we obtain the homogenized problem, coresponding to each thermoelasticity model that is proposed, and one can
see a combination of the homogenization results of an elasticity problem with the results of a diffusion one.

More exactly, in Chapter 2 we study the clasic thermoelastic model and we add jumps conditions of both
displacements and temperatures, on the interface between the components of the medium. The homogenized
problem obtained in this case is similar to the initial thermoelastic one, the differences being represented by the
presence of some coupling terms between limits u1 and u2, respectively θ1 and θ2. Also, the tensors which describe
the disconnected component do not appear in the homogenized problem.

In Chapter 3 we analize the same problem but we consider again that the elasticity of the disconnected compo-
nent is of order ε2. Also, the temperature-displacement tensor and the density are of order ε in the disconnected
component. This time, the tensors which describe the disconnected component appear in the homogenized problem,
more exactly they make their presence felt in the homogenized equation of the temperature, resulted by passing to
limit on the disconnected component. As in Chapter 1, they are also part of solution of the limit problem through
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1 Homogenization of an elastic double porosity medium with imperfect interface

the cell problems stated in Y2. Moreover, as in Chapter 1, one can see that the coupling term of limits u1 and u2

which describe the displacements, does not exists in this case.

The last model proposed in this paper is studied in Chapter 4. This time we consider that only the displacements
have a jump on the interface between the two components of the medium. The disconnected component has also
the elasticity of order ε2 and its density and the temperature-displacement tensor are of order ε. The difference
between this model and the one studied in Chapter 3, consists, as we expected, in the absence of the coupling term
of the limits which describe the temperatures.

The models proposed in this thesis have not been treated before, thus the results exposed here are original, as
they are obtained from my own research activity.

1 Homogenization of an elastic double porosity medium with imper-
fect interface

In this Chapter we study an elasticity problem stated in a double porosity medium which occpupies the domain
Ω. On the interface Γε we consider a jump of the displacements, proportional with the normal component of the
stress tensor which is supposed continuous. More exactly, we have the problem

−
∂σαεij
∂xj

= gi in Ωεα, α ∈ {1, 2} ,

σ1ε
ij nj = σ2ε

ij nj = εhε(u
2ε
i − u1ε

i ) on Γε,

u1ε = 0 on ∂Ω,

(1.1)

where hε(x) = h(x/ε) represents the jump factor σαεij = aαεijkhekh(uαε) are the components of the stress tensors.

The functions ekh(uαε) = 1
2

(
∂uαεk
∂xh

+
∂uαεh
∂xk

)
represent the components of the deformation tensor and aεαijkh are the

components of the elasticity tensors defined by:

A1ε(x) = A1(x/ε) and A2ε(x) = ε2A2(x/ε). (1.2)

We consider that h and the components aαijkh of the symmetric and positive definite tensors Aα, are smooth,
Y - periodic adn bounded functions an we also consider that h(y) > 0 on Γ. We introduce the space Vε ={
v ∈ H1(Ωε1), v = 0 pe ∂Ω

}
endowed with the L2 norm of the gradients and the Hilbert space

Hε = V Nε ×H1(Ωε2)N (1.3)

endowed with the scalar product

(u, v)Hε =

∫
Ωε1

∇u1
i∇v1

i + ε2

∫
Ωε2

∇u2
i∇v2

i + ε

∫
Γε

(u2
i − u1

i )(v
2
i − v1

i ), (1.4)

where the elements of Hε are denoted u = (u1, u2). The variational formulation of problem (1.1) is:

Find uε ∈ Hε such that

a(uε, v) =
∑
α=1,2

∫
Ωεα

aαεijkh
∂uαεk
∂xh

∂vαi
∂xj

+ ε

∫
Γε

hε(u
2ε
i − u1ε

i )(v2
i − v1

i ) =

∫
Ωε1

fiv
1
i +

∫
Ωε2

fiv
2
i , ∀v ∈ Hε. (1.5)

Theorem 1.1. For any ε ∈ (0, 1), problem (1.5) has a unique solution uε ∈ Hε. Moreover, there exists a constant
C > 0 independent of ε such that, for α ∈ {1, 2} and each i = 1, . . . , N , we have

‖uεαi ‖L2(Ωεα) 6 C, ‖∇u1ε
i ‖L2(Ωε1) 6 C, ε‖∇u2ε

i ‖L2(Ωε2) 6 C, ‖u2ε
i − u1ε

i ‖L2(Γε) 6 Cε−1/2. (1.6)

For a set D ⊂ RN and v ∈ L1(D), we denote by 〈v〉D = 1
|D|
∫
D
v(y) dy and if v is a funtion definite on Ωεα,

α ∈ {1, 2}, then ṽ the extension with zero to the entire Ω. Furthermore, we define the spaces:

H1
per(Yα) =

{
v ∈ H1

loc(RNα ) : v este Y -periodică
}
, H̃1

per(Yα) =
{
v ∈ H1

per(Yα) : 〈v〉Y = 0
}
,

V = H1
0 (Ω)N × L2

(
Ω;H1

per(Y1)
)N × L2

(
Ω;H1(Y2)

)N
.

Using periodic unfolding method we prove some convergence results and we obtain the coupled homogenized
problem (in variables x and y).
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2 The thermoelastic model with jumps in displacements and temperatures, in a two component
domain

Theorem 1.2. If uε = (u1ε, u2ε) is the solution of problem (1.1), then

ũ1ε ⇀ |Y1| · u1 weakly in L2(Ω)N ,

ũ2ε ⇀ |Y2| ·
〈
û2
〉
Y2

weakly in L2(Ω)N ,

T ε1 (u1ε) −→ u1 strongly in L2
(
Ω;H1(Y1)

)N
,

T ε2 (u2ε) ⇀ û2 weakly in L2(Ω;H1(Y2))N ,

T ε1 (ekh(u1ε)) ⇀ ekh(u1) + eykh(û1) weakly in L2(Ω× Y1),

εT ε2 (ekh(u2ε)) ⇀ eykh(û2) weakly in L2(Ω× Y2),

(1.7)

where the triplet (u1, û1, û2) ∈ V with
〈
û1
i

〉
Γ

= 0 a.e. on Ω, is the unique solution of problem∫
Ω×Y1

a1
ijkh

(
∂u1

k

∂xh
+
∂û1

k

∂yh

)(
∂ϕi
∂xj

+
∂Φ1

i

∂yj

)
+

∫
Ω×Y2

a2
ijkh

∂û2
k

∂yh

∂Φ2
i

∂yj
+

∫
Ω×Γ

h(û2
i − u1

i )(Φ
2
i − ϕi) =

=

∫
Ω×Y1

fiϕi +

∫
Ω×Y2

fiΦ
2
i , ∀(ϕ,Φ1,Φ2) ∈ V.

(1.8)

The homogenized problem in Ω is obtained by introducing in (1.8) the expressions of functions û1, respectively
û2 and using the homogenized coefficients a∗ijlm formula. More exactly,

û1
k(x, y) = wlm1k (y) · ∂u

1
l

∂xm
(x) in Ω× Y1, (1.9)

û2
k(x, y) = u1

k(x) + fl(x)wl2k(y) in Ω× Y2, (1.10)

a∗ijlm =

∫
Y1

a1
ijlm + a1

ijkh

∂wlm1k
∂yh

, (1.11)

where for l,m = 1, . . . N , wlm1 ∈ H̃1
per(Y1)N and wl2 ∈ H1(Y2)N are the unique solutions of cell problems

− ∂

∂yj

(
a1
ijlm + a1

ijkh

∂wlm1k
∂yh

)
= 0 ı̂n Y1

(
a1
ijlm + a1

ijkh

∂wlm1k
∂yh

)
nj = 0 pe Γ,


− ∂

∂yj

(
a2
ijkh

∂wl2k
∂yh

)
= δil ı̂n Y2

a2
ijkh

∂wl2k
∂yh

nj = hwl2i pe Γ.

(1.12)

Theorem 1.3. If uε ∈ Hε is the solution of problem (1.5), then

ũ1ε ⇀ |Y1| · u1 weakly in L2(Ω)N , (1.13)

ũ2ε ⇀ |Y2| · u1 + fl · ql weakly in L2(Ω)N , (1.14)

where u1 is the unique solution of problem
− ∂

∂xj

(
a∗ijkh

∂u1
k

∂xh

)
= fi in Ω

u = 0 on ∂Ω,

(1.15)

and the components of ql are qli =

∫
Y2

wl2i.

2 The thermoelastic model with jumps in displacements and temper-
atures, in a two component domain

Starting with this chapter, we will focus on a thermoelasticity problem with zero initial conditions, stated in the
domain Ω defined in Chapter 1. We consider two jump factors huε (x) = hu(x/ε) and hθε(x) = hθ(x/ε), respectively,
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2.1 Variational formulation and a priori estimates

and the elasticity tensors Aαε(x) = Aα(x/ε) where hu, hθ ∈ L∞(Γ) and the components aαijkh ∈ L∞(Y ) of the
symmetric and positive definite tensors Aα smooth, real and Y - periodic functions.

We also introduce the temperature-displacement second order tensors B1ε(x) = B1(x/ε) andB2ε(x) = εB2(x/ε)
and the thermic conductivity tensors Kαε(x) = Kα(x/ε) where Bα and Kα are symmetric, Kα being also positive
definite. Their components bαij and kαij , respectively, are also smooth and Y -periodic functions from L∞(Y ).
Furthermore, T0 denotes the reference temperature, ραε(x) = ρα(x/ε) represent the densities of the two mediums,
and cαε(x) = cα(x/ε) is the specific heat for constant deformation of each of the two mediums, the functions
ρα, cα ∈ L∞(Y ) being considered smooth, Y -periodic and obviously, strictly positive. For α ∈ {1, 2}, if uαε andθαε

are functions defined on Ωεα we introduce the constitutive laws σαεij = aαεijkhekh(uαε)− bαεij θαε.

The problem studied in this chapter is represented by ecuations (2.1)-(2.1) and conditions (2.3)-(2.6):

−
∂σαεij
∂xj

+ ραε
∂2uαεi
∂t2

= fi on Ωεα, (2.1)

− ∂

∂xi

(
kαεij

∂θαε

∂xj

)
+ T0b

αε
ij

∂eij(u
αε)

∂t
+ cαε

∂θαε

∂t
= r on Ωεα, (2.2)

σ1ε
ij nj = σ2ε

ij nj = εhuε (u2ε
i − u1ε

i ) on Γε, (2.3)

k1ε
ij

∂θ1ε

∂xj
ni = k2ε

ij

∂θ2ε

∂xj
ni = εhθε(θ

2ε − θ1ε) on Γε, (2.4)

where fi are the components of the vector field f ∈ L2(Ω)N which represent the forces, and r ∈ L2(Ω) is the energy
source. Moreover, we impose conditions on the boundary ∂Ω,

u1ε = 0, θ1ε = 0 on ∂Ω, (2.5)

and zero initial conditions, namely

uαε(0, x) = 0, u̇αε(0, x) = 0, θαε(0, x) = 0. (2.6)

2.1 Variational formulation and a priori estimates

Let T be a real and strictly positive number. In the following we shall use the notations ΩT = [0, T ] × Ω,
ΩεTα = [0, T ]× Ωεα and ΓTε = [0, T ]× Γε and we introduce the spaces

V1ε =
{
v ∈ C∞(0, T ;H1(Ωε1))), v = 0 on ∂Ω and v = 0 on {0} × Ω

}
,

V2ε =
{
v ∈ C∞(0, T ;H1(Ωε2))), v = 0 on {0} × Ω

}
,

Wε =
(
V N1ε × V N2ε

)
× (V1ε × V2ε) . (2.7)

An element of Wε will be denoted V = (v, w) where v = (v1, v2) ∈ V N1ε × V N2ε and w = (w1, w2) ∈ V1ε × V2ε. In
this space we introduce the weak formulation of problem (2.1)-(2.6) namely:

Find Uε = (uε, θε) ∈Wε such that

Lε(Uε, V ) = Dε ((f, r), V ) , ∀V = (v, w) ∈Wε, (2.8)

where, for each ε, Lε : Wε ×Wε → R is a bilinear form defined by

Lε(U, V ) =
∑
α=1,2

[∫ T

0

∫
Ωεα

(t− T )
((
−aαεijkhekh(uα) + bαεij θ

α
)
eij(v̇

α) + ραεu̇αi v̈
α
i + +bαεij eij(u

α)ẇα+

+
1

T0
cαεθαẇα

)
+ ραεu̇αi v̇

α
i + bαεij eij(u

α)wα +
1

T0
cαεθαwα +

1

T0

∫ t

0

kαεij
∂θα

∂xj

∂wα

∂xi
ds

]
−

−ε
∫ T

0

∫
Γε

(t− T )huε (u2
i − u1

i )(v̇
2
i − v̇1

i )− ε

T0

∫ T

0

∫
Γε

(t− T )hθε(θ
2 − θ1)(w2 − w1),

(2.9)

with U = (u, θ), V = (v, w), and Dε :
(
L2(Ω)N × L2(Ω)

)
×Wε → R defined by

Dε ((f, r), V ) = −
∑
α=1,2

∫ T

0

∫
Ωεα

(t− T )
(
fiv̇

α
i +

1

T0
rwα

)
. (2.10)
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2.2 The homogenization process

We introduce now the Hilbert spaceWε which is the completion of Wε in norm ‖·‖ generated by the scalar product

(U, V )Wε
=

∑
α=1,2

[∫ T

0

∫
Ωεα

uαi v
α
i + u̇αi v̇

α
i + eij(u

α)eij(v
α) + θαwα +

∫ t

0

∂θα

∂xi

∂wα

∂xi
ds

]

+ε

∫ T

0

∫
Γε

(u2
i − u1

i )(v
2
i − v1

i ) + ε

∫ T

0

∫
Γε

∫ t

0

(θ2 − θ1)(w2 − w1) ds.

(2.11)

and one can see that Lε can be extended by continuity to the entire space Wε ×Wε, and Dε can be extended to(
L2(Ω)N × L2(Ω)

)
×Wε.

Theorem 2.1. The problem (2.8) has a unique soluiton. Moreover, there exists a constant C > 0, independent of
ε, such that:

‖uεαi ‖L2(ΩεTα) 6 C, ‖u̇εαi ‖L2(ΩεTα) 6 C, ‖∇uαεi ‖L2(ΩεTα) 6 C, ‖θεα‖L2(ΩεTα) 6 C, (2.12)∥∥∥∥∫ t

0

(∇θεα)
2

∥∥∥∥
L1(ΩεTα)

6 C, ‖u2ε
i − u1ε

i ‖L2(ΓTε ) 6 Cε−1/2,

∥∥∥∥∫ t

0

(
θ2ε − θ1ε

)2∥∥∥∥
L1(ΓTε )

6 Cε−1/2. (2.13)

2.2 The homogenization process

In this section we shall use the notation

W = H2(0, T ;H1
0 (Ω))N × L∞(0, T ;L2(Ω;H1

per(Y1))N ×H2(0, T ;L2(Ω))N×

×H1(0, T ;H1
0 (Ω))× L∞(0, T ;L2(Ω;H1

per(Y1))×H1(0, T ;L2(Ω)).

Theorem 2.2. If (uε, θε) ∈ Wε is the solution of ptoblem (2.1)-(2.6), where uε = (u1ε, u2ε) and θε = (θ1ε, θ2ε),
then

ũαε
∗−⇀ |Yα| · uα weakly* in L∞(0, T ;L2(Ω))N ,

θ̃αε
∗−⇀ |Yα| · θα weakly* in L∞(0, T ;L2(Ω)),

T εα (uαε)
∗−⇀ uα weakly* in L∞(0, T ;L2(Ω;H1(Yα)))N ,

T ε1 (ekh(u1ε))
∗−⇀ ekh(u1) + eykh(û1) weakly* in L∞(0, T ;L2(Ω× Y1)),

T ε2 (ekh(u2ε))
∗−⇀ 0 weakly* in L∞(0, T ;L2(Ω× Y2)),

T εα (θαε)
∗−⇀ θα weakly* in L∞(0, T ;L2(Ω;H1(Yα))),

T ε1 (∇θ1ε)
∗−⇀ ∇θ1 +∇y θ̂1 weakly* in L∞(0, T ;L2(Ω× Y1)),

T ε2 (∇θ2ε)
∗−⇀ 0 weakly* in L∞(0, T ;L2(Ω× Y2)),

(2.14)

where (u1, û1, u2, θ1, θ̂1, θ2) ∈W , is the unique solution of problem∫ T

0

∫
Ω×Y1

(t− T )
[
a1
ijkh

(
ekh(u1) + eykh(û1)

)
− b1ijθ1

] (
ėij(ϕ

1) + ėyij(Φ
1)
)

+

+
∑
α=1,2

∫ T

0

∫
Ω×Yα

(t− T )
[
ραüαi ϕ̇

α
i +

1

T0
cαθ̇αqα

]
+

+
1

T0

∫ T

0

∫
Ω×Y1

(t− T )k1
ij

(∂θ1

∂xj
+
∂θ̂1

∂yj

)(∂q1

∂xi
+
∂Q1

∂yi

)
+

∫ T

0

∫
Ω×Y1

(t− T )b1ij

(
ėij(u

1) + ėyij(û
1)
)
q1+

+

∫ T

0

∫
Ω×Γ

(t− T )
[
hu(u2

i − u1
i )(ϕ̇

2
i − ϕ̇1

i ) +
1

T0
hθ(θ2

i − θ1
i )(q

2
i − q1

i )
]

=

=
∑
α=1,2

∫ T

0

∫
Ω×Yα

(t− T )
(
fiϕ̇

α
i +

1

T0
rqα
)
, ∀(ϕ1,Φ1, ϕ2, q1, Q1, q2) ∈W.

(2.15)

Moreover, for α ∈ {1, 2} and for almost x ∈ Ω we have uα(0, x) = 0, u̇α(0, x) = 0, θα(0, x) = 0.

- 5 -



3 The thermoelastic model in a double porosity medium with jumps in displacements and
temperatures

We introduce now the unique solutions z1, wlm1 , χ1 ∈ H̃1
per(Y1)N (l,m = 1, . . . , N), of the cell problems

− ∂

∂yj

(
a1
ijkh

∂z1
k

∂yh
− b1ij

)
= 0 in Y1

(
a1
ijkh

∂z1
k

∂yh
− b1ij

)
nj = 0 on Γ,


− ∂

∂yj

(
a1
ijlm + a1

ijkh

∂wlm1k
∂yh

)
= 0 in Y1

(
a1
ijlm + a1

ijkh

∂wlm1k
∂yh

)
nj = 0 on Γ,

(2.16)

respectively 
− ∂

∂yi

(
k1
ik + k1

ij

∂χ1
k

∂yj

)
= 0 in Y1

(
k1
ik + k1

ij

∂χ1
k

∂yj

)
ni = 0 on Γ,

(2.17)

and one can see that

û1
k(t, x, y) =

∂u1
l

∂xm
(t, x) · wlm1k (y) + θ1(t, x) · z1

k(y). (2.18)

θ̂1(t, x, y) =
∂θ1

∂xk
(t, x) · χ1

k(y). (2.19)

we define now the homogenized coefficients

a1∗
ijlm =

∫
Y1

a1
ijlm + a1

ijkh

∂wlm1k
∂yh

, b1∗lm =

∫
Y1

b1lm + b1ij
∂wlm1i
∂yj

, k1∗
ik =

∫
Y1

k1
ik + k1

ij

∂χ1
k

∂yj
, γ1∗ =

∫
Y1

b1ij
∂z1
i

∂yj
. (2.20)

and we prove the next theorem:

Theorem 2.3. If (uε, θε) ∈ Wε is the solution of problem (2.1)-(2.6), where uε = (u1ε, u2ε) and θε = (θ1ε, θ2ε),
then for α ∈ {1, 2}

ũαε
∗−⇀ |Yα| · uα weakly* in L∞(0, T ;L2(Ω))N , (2.21)

θ̃αε
∗−⇀ |Yα| · θα weakly* in L∞(0, T ;L2(Ω)), (2.22)

where (u, θ) with u = (u1, u2) and θ = (θ1, θ2) is the unique solution of problem

− ∂

∂xj

(
a1∗
ijkh

∂u1
k

∂xh
− b1∗ij θ1

)
+
〈
ρ1
〉
Y1

∂2u1
i

∂t2
−Hu(u2

i − u1
i ) = |Y1| fi in Ω, (2.23)

〈
ρ2
〉
Y2

∂2u2
i

∂t2
+Hu(u2

i − u1
i ) = |Y2| fi in Ω, (2.24)

− ∂

∂xi

(
k1∗
ij

∂θ1

∂xj

)
+ T0b

1∗
ij

∂eij(u
1)

∂t
+
(
T0γ

1∗ +
〈
c1
〉
Y1

)∂θ1

∂t
−Hθ(θ2 − θ1) = |Y1| r in Ω, (2.25)

〈
c2
〉
Y2

∂θ2

∂t
+Hθ(θ2

i − θ1
i ) = |Y2| r in Ω, (2.26)

u1 = 0, θ1 = 0 on ∂Ω, (2.27)

with the initial conditions
uα(0, x) = 0, u̇α(0, x) = 0, θα(0, x) = 0. (2.28)

where Hu =

∫
Γ

hu and Hθ =

∫
Γ

hθ.

3 The thermoelastic model in a double porosity medium with jumps
in displacements and temperatures

In this chapter we study again problem (2.1)-(2.5) considered in Chapter 2 but this time the domain Ω is
occupied by a double porosity medium similar to the one considered in Chapter 1. As we expected, the results
obtained here are a combination between the results obtained in homogenization of the elastic problem considered
in a double porosity medium, from Chapter 1, and the results in the homogenization of a diffusion problem stated
in a domain occupied by a clasic medium. As in Chapter 1, it is interesting to see that although the tensors A2
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3.1 Homogenization results

and B2 do not appear in the homogenized problem, they appear in the limit of ũ2ε through two terms ξl and ζ,
respectively which are part of the mentioned limit.

In what follows we shal use the same notations as in Chapter 2 and the coefficients of the problem will have the
same properties. Unlike the precedent chapter we will consider that A2ε(x) = ε2A2(x/ε), and ρ2ε(x) = ερ2(x/ε).
The space Wε represents this time the completion of Wε in norm ‖·‖ generated by the scalar product

(U, V )Wε
=

∫ T

0

∫
Ωε1

eij(u
1)eij(v

1) + ε2

∫ T

0

∫
Ωε2

eij(u
2)eij(v

2) +
∑
α=1,2

[∫ T

0

∫
Ωεα

u̇αi v̇
α
i + θαwα +

∫ t

0

∂θα

∂xi

∂wα

∂xi
ds

]
+

+ε

∫ T

0

∫
Γε

(u2
i − u1

i )(v
2
i − v1

i ) + ε

∫ T

0

∫
Γε

∫ t

0

(θ2 − θ1)(w2 − w1) ds.

(3.1)
and the forms Lε and Dε can still be extended by continuity to spaces ı̂ncă se pot prelungi prin continuitate la

Wε ×Wε and
(
L2(Ω)N × L2(Ω)

)
×Wε, respectively.

Theorem 3.1. Există o constantă C > 0, independentă de ε pentru care:

‖uεαi ‖L2(ΩεTα) 6 C, ‖u̇εαi ‖L2(ΩεTα) 6 C, ‖∇u1ε
i ‖L2(ΩεT1) 6 C, ε‖∇u2ε

i ‖L2(ΩεT2) 6 C, (3.2)

‖θεα‖L2(ΩεTα) 6 C,

∥∥∥∥∫ t

0

(∇θεα)
2

∥∥∥∥
L1(ΩεTα)

6 C, (3.3)

‖u2ε
i − u1ε

i ‖L2(ΓTε ) 6 Cε−1/2,

∥∥∥∥∫ t

0

(
θ2ε − θ1ε

)2∥∥∥∥
L1(ΓTε )

6 Cε−1/2. (3.4)

3.1 Homogenization results

We consider

W = H2(0, T ;H1
0 (Ω))N × L∞(0, T ;L2(Ω;H1

per(Y1))N × L∞(0, T ;L2(Ω;H1(Y2)))N×

×H1(0, T ;H1
0 (Ω))× L∞(0, T ;L2(Ω;H1

per(Y1))×H1(0, T ;L2(Ω)),
(3.5)

Theorem 3.2. If (uε, θε) ∈ Wε is the solution of problem (2.1)-(2.6), with A1ε(x) = A1(x/ε), A2ε(x) = ε2A2(x/ε),
ρ1ε(x) = ρ1(x/ε) and ρ2ε(x) = ερ2(x/ε) where uε = (u1ε, u2ε) and θε = (θ1ε, θ2ε), then

ũ1ε ∗−⇀ |Y1| · u1 weakly* in L∞(0, T ;L2(Ω))N ,

ũ2ε ∗−⇀ |Y2| ·
〈
û2
〉
Y2

weakly* in L∞(0, T ;L2(Ω))N ,

θ̃αε
∗−⇀ |Yα| · θα weakly* in L∞(0, T ;L2(Ω)),

T εα (u1ε)
∗−⇀ u1 weakly* in L∞(0, T ;L2(Ω;H1(Y1)))N ,

T εα (u2ε)
∗−⇀ û2 weakly* in L∞(0, T ;L2(Ω;H1(Y2)))N ,

T ε1 (ekh(u1ε))
∗−⇀ ekh(u1) + eykh(û1) weakly* in L∞(0, T ;L2(Ω× Y1)),

εT ε2 (ekh(u2ε))
∗−⇀ eykh(û2) weakly* in L∞(0, T ;L2(Ω× Y2)),

T εα (θαε)
∗−⇀ θα weakly* in L∞(0, T ;L2(Ω;H1(Yα))),

T ε1 (∇θ1ε)
∗−⇀ ∇θ1 +∇y θ̂1 weakly* in L∞(0, T ;L2(Ω× Y1)),

T ε2 (∇θ2ε)
∗−⇀ 0 weakly* in L∞(0, T ;L2(Ω× Y2)),

(3.6)

where (u1, û1, û2, θ1, θ̂1, θ2) ∈W , is the unique solution of problem∫ T

0

∫
Ω×Y1

(t− T )
[
a1
ijkh

(
ekh(u1) + eykh(û1)

)
− b1ijθ1

] (
ėij(ϕ

1) + ėyij(Φ
1)
)

+
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3.1 Homogenization results

+

∫ T

0

∫
Ω×Y2

(t− T )
[
a2
ijkhe

y
kh(û2)− b2ijθ2

]
ėyij(Φ

2) +

∫ T

0

∫
Ω×Y1

(t− T )ρ1ü1
i ϕ̇

1
i+

+

∫ T

0

∫
Ω×Y1

(t− T )b1ij

(
ėij(u

1) + ėyij(û
1)
)
q1 +

∫ T

0

∫
Ω×Y2

(t− T )b2ij ė
y
ij(û

2)q2+ (3.7)

+
1

T0

∑
α=1,2

∫ T

0

∫
Ω×Yα

(t− T )cαθ̇αqα +
1

T0

∫ T

0

∫
Ω×Y1

(t− T )k1
ij

(∂θ1

∂xj
+
∂θ̂1

∂yj

)(∂q1

∂xi
+
∂Q1

∂yi

)
+

+

∫ T

0

∫
Ω×Γ

(t− T )

[
hu(û2

i − u1
i )(Φ̇

2
i − ϕ̇1

i ) +
1

T0
hθ(θ2

i − θ1
i )(q

2
i − q1

i )

]
=

=

∫ T

0

∫
Ω×Y1

(t− T )
(
fiϕ̇

1
i +

1

T0
rq1
)

+

∫ T

0

∫
Ω×Y2

(t− T )
(
fiΦ̇

2
i +

1

T0
rq2
)
,

∀(ϕ1,Φ1,Φ2, q1, Q1, q2) ∈W.

Moreover, for almost every x ∈ Ω we have u1(0, x) = 0, u̇1(0, x) = 0, θα(0, x) = 0.

We find the expresions of û1, û2, θ̂1 thus (2.18)-(2.19) still hold, moreover

û2
k(t, x, y) = u1

k(t, x) + fl(x)wl2k(y) + θ2(t, x)z2
k(y). (3.8)

where z2, wl2 ∈ H1(Y2)N are the unique solutions of cell problems
− ∂

∂yj

(
a2
ijkh

∂wl2k
∂yh

)
= δil in Y2

a2
ijkh

∂wl2k
∂yh

nj = huwl2i on Γ,


− ∂

∂yj

(
a2
ijkh

∂z2
k

∂yh
− b2ij

)
= 0 in Y2

(
a2
ijkh

∂z2
k

∂yh
− b2ij

)
nj = 0 on Γ.

(3.9)

We define

γ2∗ =

∫
Y2

b2ij
∂z2
i

∂yj
(3.10)

an introducing (2.18), (2.19), (2.20), (3.8) and (3.10) into the limit problem (3.7), we get the homogenized problem
in Ω. More exactly, we prove the following theorem:

Theorem 3.3. If (uε, θε) ∈ Wε is the solution of problem (2.1)-(2.6) with A1ε(x) = A1(x/ε), A2ε(x) = ε2A2(x/ε),
ρ1ε(x) = ρ1(x/ε) and ρ2ε(x) = ερ2(x/ε) , where uε = (u1ε, u2ε) and θε = (θ1ε, θ2ε), then we have

ũ1ε ∗−⇀ |Y1| · u1 weakly* in L∞(0, T ;L2(Ω))N , (3.11)

ũ2ε ∗−⇀ |Y2| · u1 + fl · ξl + θ2 · ζ weakly* in L∞(0, T ;L2(Ω))N , (3.12)

θ̃αε
∗−⇀ |Yα| · θα weakly* in L∞(0, T ;L2(Ω)), ∀α ∈ {1, 2} , (3.13)

where (u, θ) with u = (u1, u2) and θ = (θ1, θ2) is the unique solution of problem

− ∂

∂xj

(
a1∗
ijkh

∂u1
k

∂xh
− b1∗ij θ1

)
+
〈
ρ1
〉
Y1

∂2u1
i

∂t2
= fi in Ω, (3.14)

− ∂

∂xi

(
k1∗
ij

∂θ1

∂xj

)
+ T0b

1∗
ij

∂eij(u
1)

∂t
+
(
T0γ

1∗ +
〈
c1
〉
Y1

)∂θ1

∂t
−Hθ(θ2

i − θ1
i ) = |Y1| r in Ω, (3.15)

(
T0γ

2∗ +
〈
c2
〉
Y2

)∂θ2

∂t
+Hθ(θ2

i − θ1
i ) = |Y2| r in Ω, (3.16)

u1 = 0, θ1 = 0 on ∂Ω, (3.17)

with the initial conditions
uα(0, x) = 0, u̇α(0, x) = 0, θα(0, x) = 0, (3.18)

where Hθ =

∫
Γ

hθ and the components of vector fields ξl and ζ being ξli =

∫
Y2

wl2i and ζi =

∫
Y2

z2
i , respectively.
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4 The thermoelastic model in a double porosity medium with jumps in displacements and
continuity in temperatures

4 The thermoelastic model in a double porosity medium with jumps
in displacements and continuity in temperatures

In this chapter we change the jump of temperatures condition on the interface Γε, from the problem studied in
Chapter 3. More exactly, on each of the two components Ωε1 and Ωε2 of the domain Ω occupied by a double porosity
medium, we consider the ecuations

−
∂σαεij
∂xj

+ ραε
∂2uαεi
∂t2

= fi (4.1)

− ∂

∂xi

(
kαεij

∂θαε

∂xj

)
+ T0b

αε
ij

∂eij(u
αε)

∂t
+ cαε

∂θαε

∂t
= r (4.2)

along the conditions on the interface Γε and the boundary ∂Ω, respectively

σ1ε
ij nj = σ2ε

ij nj = εhuε (u2ε
i − u1ε

i ) on Γε, (4.3)

k1ε
ij

∂θ1ε

∂xj
ni = k2ε

ij

∂θ2ε

∂xj
ni on Γε, (4.4)

θ1ε = θ2ε on Γε, (4.5)

u1ε = 0, θ1ε = 0 on ∂Ω, (4.6)

and the initial conditions
uαε(0, x) = 0, u̇αε(0, x) = 0, θαε(0, x) = 0. (4.7)

As in Chapter 3 we consider that

A1ε(x) = A1(x/ε), A2ε(x) = ε2A2(x/ε), B1ε(x) = B1(x/ε, B2ε(x) = εB2(x/ε),

ρ1ε(x) = ρ1(x/ε), ρ2ε(x) = ερ2(x/ε), Kαε(x) = Kα(x/ε), cαε(x) = cα(x/ε).

The functional space used in this chapter will also be the space Wεdefined in Chapter 2 by (2.7), and the variational
formulation of problem (4.1)-(4.7) is:

Find Uε = (uε, θε) ∈Wε such that

Lε(Uε, V ) = Dε ((f, r), V ) , ∀V = (v, w) ∈Wε, (4.8)

where for each ε, the bilinear form Lε : Wε ×Wε → R is defined this time by:

Lε(U, V ) =
∑
α=1,2

[∫ T

0

∫
Ωεα

(t− T )
((
−aαεijkhekh(uα) + bαεij θ

α
)
eij(v̇

α) + ραεu̇αi v̈
α
i + +bαεij eij(u

α)ẇα+

+
1

T0
cαεθαẇα

)
+ ραεu̇αi v̇

α
i + bαεij eij(u

α)wα +
1

T0
cαεθαwα +

1

T0

∫ t

0

kαεij
∂θα

∂xj

∂wα

∂xi
ds

]
−

−ε
∫ T

0

∫
Γε

(t− T )huε (u2
i − u1

i )(v̇
2
i − v̇1

i ),

(4.9)

and Dε :
(
L2(Ω)N × L2(Ω)

)
×Wε → R is given by (2.10). The space Wε is obtained this time by completion of

Wε in norm generated by the scalar product

(U, V )Wε
=

∫ T

0

∫
Ωε1

eij(u
1)eij(v

1) + ε2

∫ T

0

∫
Ωε2

eij(u
2)eij(v

2)+

+
∑
α=1,2

[∫ T

0

∫
Ωεα

u̇αi v̇
α
i + θαwα +

∫ t

0

∂θα

∂xi

∂wα

∂xi
ds

]
+ ε

∫ T

0

∫
Γε

(u2
i − u1

i )(v
2
i − v1

i ).

(4.10)

and again the forms Lε(·, ·) and Dε(·, ·) can be extended by continuity to Wε ×Wε and
(
L2(Ω)N × L2(Ω)

)
×Wε,

respectively.

Theorem 4.1. Problem (4.8) has a unique solution. Moreover, the exists a constant C > 0, independent of ε,
such that:

‖uεαi ‖L2(ΩεTα) 6 C, ‖u̇εαi ‖L2(ΩεTα) 6 C, ‖∇uαεi ‖L2(ΩεTα) 6 C, (4.11)

‖θεα‖L2(ΩεTα) 6 C,

∥∥∥∥∫ t

0

(∇θεα)
2

∥∥∥∥
L1(ΩεTα)

6 C, ‖u2ε
i − u1ε

i ‖L2(ΓTε ) 6 Cε−1/2. (4.12)
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4.1 Homogenization results

4.1 Homogenization results

Theorem 4.2. If (uε, θε) ∈ Wε is the unique solution of (4.1)-(4.7), where uε = (u1ε, u2ε) and θε = (θ1ε, θ2ε),

then convergences (3.6) hold, where (u1, û1, û2, θ1, θ̂1, θ2) ∈W defined by (3.5), is the unique solution of problem∫ T

0

∫
Ω×Y1

(t− T )
[
a1
ijkh

(
ekh(u1) + eykh(û1)

)
− b1ijθ1

] (
ėij(ϕ

1) + ėyij(Φ
1)
)

+

+

∫ T

0

∫
Ω×Y2

(t− T )
[
a2
ijkhe

y
kh(û2)− b2ijθ2

]
ėyij(Φ

2) +

∫ T

0

∫
Ω×Y1

(t− T )ρ1ü1
i ϕ̇

1
i+

+

∫ T

0

∫
Ω×Y1

(t− T )b1ij

(
ėij(u

1) + ėyij(û
1)
)
q1 +

∫ T

0

∫
Ω×Y2

(t− T )b2ij ė
y
ij(û

2)q2+ (4.13)

+
1

T0

∑
α=1,2

∫ T

0

∫
Ω×Yα

(t− T )cαθ̇αqα +
1

T0

∫ T

0

∫
Ω×Y1

(t− T )k1
ij

(∂θ1

∂xj
+
∂θ̂1

∂yj

)(∂q1

∂xi
+
∂Q1

∂yi

)
+

+

∫ T

0

∫
Ω×Γ

(t− T )hu(û2
i − u1

i )(Φ̇
2
i − ϕ̇1

i ) =

∫ T

0

∫
Ω×Y1

(t− T )
(
fiϕ̇

1
i +

1

T0
rq1
)

+

∫ T

0

∫
Ω×Y2

(t− T )
(
fiΦ̇

2
i +

1

T0
rq2
)
,

∀(ϕ1,Φ1,Φ2, q1, Q1, q2) ∈W.

Moreover, for almost every x ∈ Ω we have

u1(0, x) = 0, u̇1(0, x) = 0, θα(0, x) = 0. (4.14)

We prove that the expressions (2.18), (2.19), (3.8) of functions û1, θ̂1 and û2, respectively, still hold and
introducing them into the limit problem (4.13) we get the homogenized problem in Ω.

Theorem 4.3. If (uε, θε) ∈ Wε is the solution of problem (4.1)-(4.7), where uε = (u1ε, u2ε) and θε = (θ1ε, θ2ε),
then we have

ũ1ε ∗−⇀ |Y1| · u1 weakly* in L∞(0, T ;L2(Ω))N , (4.15)

ũ2ε ∗−⇀ |Y2| · u1 + fl · ξl + θ2 · ζ weakly* in L∞(0, T ;L2(Ω))N , (4.16)

θ̃αε
∗−⇀ |Yα| · θαweakly* in L∞(0, T ;L2(Ω)), ∀α ∈ {1, 2} , (4.17)

where (u, θ) with u = (u1, u2) and θ = (θ1, θ2) is the uniique solution of problem

− ∂

∂xj

(
a1∗
ijkh

∂u1
k

∂xh
− b1∗ij θ1

)
+
〈
ρ1
〉
Y1

∂2u1
i

∂t2
= fi in Ω, (4.18)

− ∂

∂xi

(
k1∗
ij

∂θ1

∂xj

)
+ T0b

1∗
ij

∂eij(u
1)

∂t
+
(
T0γ

1∗ +
〈
c1
〉
Y1

)∂θ1

∂t
= |Y1| r in Ω, (4.19)

(
T0γ

2∗ +
〈
c2
〉
Y2

)∂θ2

∂t
= |Y2| r in Ω, (4.20)

u1 = 0, θ1 = 0, on ∂Ω, (4.21)

with the initial conditions
uα(0, x) = 0, u̇α(0, x) = 0, θα(0, x) = 0, (4.22)

where the components of vector fields ξl and ζ are ξli =

∫
Y2

wl2i and ζi =

∫
Y2

z2
i , respectively.
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